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Natural convection in a Boussinesq fluid filling the narrow gap between two 
isothermal, concentric spheres a t  different temperatures depends strongly on radius 
ratio, Prandtl number, and Grashof number. When the inner sphere has a higher 
temperature than the outer sphere, and for fixed values of radius ratio and Prandtl 
number, experiments show the flow to be steady and axisymmetric for sufficiently 
small Grashof number and quasi-periodic and axisymmetric for Grashof numbers 
greater than a critical value. It is our hypothesis that the observed transition is a flow 
bifurcation. This hypothesis is examined by solving an appropriate eigenvalue 
problem. The critical Grashof number, critical eigenvalues, and corresponding 
eigenvectors are obtained as functions of the radius ratio, Prandtl number, and 
longitudinal wavenumber. Critical Grashof numbers range from 1.18 x l@ to 
2.63 x lo3 as Prandtl number Pr increases from zero to 0.7, for radius ratios of 0.900 
and 0.950. A transitional Prandtl number Prt exists such that for Pr < Prt the 
bifurcation is time-periodic and axisymmetric. For Pr > Pr, the bifurcation is steady 
and non-axisymmetric with wavenumber two. 

A first approximation to the bifurcated flow is obtained using the critical 
eigenvectors. For Pr < Prt the bifurcation sets in as a cluster of relatively strong cells 
with alternating directions of rotation. The cells remain fixed in location, but pulsate 
with time. The cluster moves toward the top of the annulus as Pr increases toward 
Pr,. An important feature of the non-axisymmetric bifurcation for Pr > Pr, is a set 
of four cells located at each pole of the annulus in which the radial velocity alternates 
direction in moving from any one cell to an adjacent one. For fixed radius ratio, the 
average Nusselt number at criticality varies only slightly with Prandtl number. 

1. Introduction 
The objective of the work reported here is to investigate the linear stability and 

bifurcation of the natural convection flow of a viscous fluid contained in a narrow- 
gap, concentric spherical annulus, using an appropriate numerical model. The two 
spherical shells are isothermal, and the temperature of the inner sphere is greater 
than that of the outer sphere. The resulting basic motion is assumed to be steady, 
axisymmetric, and isochoric. Disturbances to the basic motion are fully three- 
dimensional and time-dependent. In this problem, gravity acts everywhere parallel 
to a fixed vertical axis of the annulus. This problem is thus different from the 
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spherical analogue of the Rayleigh-Be'nard problem, in which gravity acts radially 
inward, and consequently the basic motion is quiescent : for a temperature difference 
between the spherical shells below a critical value the fluid between the spheres is at  
rest. In the problem addressed here, there is a non-quiescent basic motion for all non- 
zero temperature differences between the bounding spheres. 

This problem is motivated by the experimental observations of several researchers, 
notably Bishop et al. (1964a, b ) ,  Bishop, Mack & Scanlon (1966) and Yin et al. (1973), 
who produced the first flow visualization data for this problem ; air and water were 
the working fluids. These observations reveal certain regularities of behaviour in 
which, for a given fluid, the flow pattern observed depends on the width of the gap 
and the temperature difference between the spheres. For most fluids, a steady, 
axisymmetric motion is induced by buoyancy forces as the temperature difference 
between the spheres is increased from zero. As the temperature difference is 
increased, this basic motion adjusts to the increased driving potential primarily by 
increasing fluid velocity. At a critical temperature difference, which depends on the 
gap width and Prandtl number, the basic motion becomes unstable to small 
disturbances and bifurcates to another, distinctly different, stable flow pattern, 
which may be unsteady and non-axisymmetric. 

The problem of computing the natural convection basic motion has been addressed 
in a number of studies which began with the transient finite-difference solution of 
Brown (1967). Over the subsequent twenty years the problem has been solved by a 
variety of methods for a variety of fluids and geometries (e.g. Mack & Hardee 1968; 
Singh & Chen 1980; Astill, Leong & Martorana 1980; Caltagirone, Combarnous & 
Mojtabi 1980; Ingham 1981 ; Singh & Elliot 1981 ; Nelsen, Douglass & Alexander 
1982; Mojtabi & Caltagirone 1982;-Nelsen & Douglass 1984; and Wright & Douglass 
1986). Certain conclusions emerge from an examination of this body of work. First, 
all the studies reproduce the basic crescent eddy flow pattern and heat transfer 
characteristics (isotherms, temperature profiles, and Nusselt numbers) as described 
by Bishop, Yin et al. reasonably well within their respective ranges of validity, at 
least for air and silicone oils. Secondly, although the isotherms depend markedly on 
the boundary conditions, the basic crescent eddy flow pattern appears to be 
relatively insensitive to them. Thirdly, the average Nusselt number is relatively 
insensitive to the flow pattern. Fourthly, for sufficiently narrow gaps and sufficiently 
large Rayleigh or Grashof number, the nonlinear governing equations apparently 
admit two steady axisymmetric flow patterns (Caltagirone et al. 1980), a single-eddy 
pattern (the crescent eddy flow pattern), and a multiple-eddy flow pattern, in which 
a weak, counter-rotating eddy appears at the top of the annulus adjacent to the 
vertical axis and a second weak eddy may appear at  the bottom of the annulus. It 
remains unresolved whether or not the multicellular flow is observable. 

The linear stability results presented here will determine the critical Grashof 
numbers and also the spatial and temporal nature of the bifurcated flow. To date 
only two analyses of the stability of the basic motion have been reported in the 
literature. Mojtabi & Caltagirone (1982) investigated the linear stability of the basic 
motion for infinite Prandtl number. They assumed that the instability sets in at  the 
top of the annulus, thereby reducing the partial differential equations governing the 
disturbances to a coupled system of ordinary differential equations by neglecting the 
dependence on the latitudinal angle. Farmer, Douglass & Trogdon (1986) used linear 
theory to study the stability of the basic motion to infinitesimal, axisymmetric 
disturbances and determined a set of critical Grashof numbers and corresponding 
heat transfer rates for a range of Prandtl numbers and gap widths. Their study used 
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the Boussinesq approximation and an analytical representation of the basic motion 
determined by Wright & Douglass (1986), and assumed bifurcation to a steady, 
axisymmetric flow pattern a t  the critical Grashof number. An error in the basic 
motion for flows in which the temperature of the inner sphere is greater than that of 
the outer sphere caused the stability results and conclusions to be incorrect. 

The present investigation provides linear stability results for natural convection in 
concentric spherical annulus enclosures, in which the inner sphere has a higher 
temperature than the outer sphere. The disturbances in the present investigation are 
fully three-dimensional, and no assumption is made regarding the temporal nature 
of the bifurcation other than to use an exponential time factor to produce an 
eigenvalue problem. In particular, no principle of exchange of stabilities is assumed 
to exist; in fact, the existence of such a principle for this problem depends on the 
value of the Prandtl number. The disturbances are expressed as full spectral 
expansions in terms of spherical harmonics and Chebyshev polynomials ; truncating 
the expansions reduces the governing partial differential equations to a matrix 
eigenvalue problem. The matrix eigenvalue problem is solved using a modified tau 
method described by Gardner, Trogdon & Douglass (1989); the notable feature of 
this approximate method is that it eliminates the computation of spurious 
eigenmodes. Calculations are performed for Prandtl numbers of 0, 0.025 (cor- 
responding to mercury a t  20 "C), 0.1, and 0.4, and 0.7 (corresponding to air), and for 
radius ratios (the ratio of the inner sphere radius to the outer sphere radius) of 0.900 
and 0.950. 

We begin with a description of the equations governing the evolution of 
infinitesimal, non-axisymmetric disturbances to the steady, axisymmetric basic 
motion of a Boussinesq fluid contained in a narrow-gap spherical annulus with 
isothermal boundaries. Numerical convergence of the critical eigenvalues will be 
discussed, and the critical eigenvalues and eigenvectors will be used to display the 
temporal and spatial nature of the bifurcated flow in a neighbourhood of the critical 
Grashof number. 

2. The stability problem 
Two concentric spheres, the inner one with radius Fi and the outer one of radius f0,  

are fixed with respect to each other and to an inertial reference frame attached to the 
surface of a gravitating body such as the Earth. The gap between the two spheres is 
completely filled by a single Boussinesq fluid. The inner and outer spheres arc 
maintained a t  constant and spatially uniform temperatures 8 and Po, respectively. 
The gravitational acceleration vector S acts along a fixed vertical diameter 
with constant magnitude, g,  and not everywhere radially as in the spherical 
Rayleigh-BBnard problem. The geometry of this system is depicted in figure 1. We 
shall examine the stability of the resulting flows to small perturbations. 

2.1. The governing equations 

We introduce a spherical polar coordinate system (F,8,$) with its origin a t  the 
common centre of the spheres (figure 1) ;  r" is the dimensional radius, 8 is the 
azimuthal angle, and #I is the longitudinal angle. Let f, p ,  and P represent the 
dimensional fluid velocity, temperature, and pressure, respectively, and let f 
represent time. The spatial domain of interest is the gap between the spheres. The 
boundary conditions are the fixed temperatures of each sphere, and the no-slip 
velocity condition on each sphere. 
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FIGURE 1. The geometry of the mathematical natural convection problem and the spherical 
polar coordinate system (F, 6, #) . 

We non-dimensionalize the equations governing the motion of a Newtonian fluid 
in the Boussinesq approximation using the scales AT = Fo-Fi (the gap width) for 
length, A F  = \z - ZI for temperature differences, V* = (a, AF#Ar")2 (the rise velocity) 
for velocities, P* = Po( V*)2  for pressure differences, and AF/V* for time. Po is the fluid 
density and d z ,  is the coefficient of volumetric thermal expansion; the subscript 0 
indicates evaluation a t  a convenient and appropriate reference state (G, F,). The 
corresponding dimensionless variables are written without tildes. 

The dimensionless governing equations and boundary conditions are then 

v .  v =  0,  ( 1 )  

1 
Gri 

;+ V . V V =  -V(P-P,)+Te,+-V2V, 

3T 1 -+ V-VT = - 1 V2T, 
at Pr Cry (3) 

Equations (1)-(3) formally comprise the Boussinesq approximation. ps is the 
hydrostatic pressure, defined by V E  = -p",Be,; e, is a unit vector in the upward 
vertical direction. Pr is the Prandtl number, and Gr is Grashof number (based on gap 
width), defined by Pr = Po Epo/Ic"o and Gr = di, QAp(AF)3/G. ,G is the dynamic viscosity, 
E p  is the specific heat capacity a t  constant pressure, is the thermal conductivity and 
F = ,.!ZIP is the kinematic viscosity. The stability parameter is the square root of Gr, 
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R. The radius ratio is 7 = Ti/To and the dimensionless gap width is s = 1 -)I ; in terms 
of E and 7, ri = 7/e and ro = l/eL Equations (1)-(3) are valid for certain limits on A7 
and Af', which depend on c, Po and the fluid properties. The expressions for the 
limits are given in Gardner (1988), 

2.2. The baseJlow solution 

In order to examine the entire stability curve, it is desirable to obtain a base flow 
solution which is valid for all dimensionless gap widths, Prandtl numbers, and 
Grashof numbers. Such solutions are available for limited ranges of 7, Pr and Gr as 
described in the Introduction. We have selected, however, a solution which is valid 
for only small E ( = 1-7) which is expressed as a truncated power series in e (Wright 
& Douglass 1986). This solution is used here because it is known explicitly in terms 
of the independent spatial variables and parameters governing the flow. In addition, 
the solution has a known range of validity, and the results presented here for narrow 
gaps can, in some cases (viz., near the poles), be directly compared to the 
Rayleigh-Be'nard problem having horizontal, isothermal, rigid-rigid boundaries. 

The base flow solution is expressed as a stream function @ and a temperature 
function T,: 

$(r ,  x) = (1 - x a ) [ r ( r ;  R, Pr, E )  + z A ( r  ; R, Pr, s)], 

T,(r,  x) = T,(r ; R, Pr,  s) + x[E(r ; R, Pr, 8 )  + xQ(r ; R, Pr, E ) ] .  (9) 
x is the polar variable defined by 

2 = COSO, (10) 
The functions r, A ,  T,, 6, and Q are nth-order expansions in s (Gardner 1988). $ and 

in (8) and (9) are valid for radius ratios 7 in the range 0.9 < 7 < 1 and for values 
of R in the range 

when the expansion order is greater than or equal to eight. The validity of the stream 
and temperature functions given in (8) and (9) has been established by convergence 
studies in Wright (1984), and Wright & Douglass (1986). 

Typical streamlines and isotherms for this base flow are shown in figure 2. A 
positive stream-function value represents a clockwise flow direction. In figure 2 the 
radial variable r has been mapped to the interval [ - 1, 11 by the transformation 

Because the gaps are narrow, the transformations (10) and (12) allow the streamlines 
and isotherms to be visualized in more detail than in the original variables. 

2.3. Derivation of the disturbance equations 

Let (5,  T,, Po) represent a base flow, and let (6(r,x,  q5, t ) ,  F(r,  x, 4, t ! ) ,  $(r ,  x,q5, t ) )  be a 
disturbance to it. Substituting the sum ( V, + 6,  T, + p ,  Po +$) into (1)-(7) and using 
the fact that (V,, To, Po) is a solution, we obtain 

v-6 = 0,  (13) 

(14) 
ae 1 - + ( v , - v ) ~ + ( ~ . v )  ~ , + ( ; - ~ ) i r  = -V$+Fez+-V26, 
at R 

1 

1 T+ (v,. V) F +  ( G .  V) T,  + (6.V) F = -v2F 
at RPr 
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FIGURE 2. (a) Typical base flow streamlines and (b) isotherms, for Pr = 0.7, q = 0.900 and 
R = 25. 

in the problem domain. We eliminate the pressure by taking the curl of (la), and 

a 1 
obtain 

-curl 8 = curl (f'ez) + curl [( G - V )  6+ (6 .V)  V,+ (6- V) 6]--cur13 6. (16) 
at R 

The boundary conditions are f' = 0 and fi = 0 for t 3 0. Equations (13), (15), and (16) 
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with these boundary conditions and some specified initial conditions are the 
equations governing the evolution of disturbances to the base flow. 

2.4. The linear stability problem 

Since 8 is solenoidal, we can express the disturbance velocity 8 as? sum of two other 
velocities which arise from the poloidal and toroidal potentials @(r,  x, q5,  t) and Y(r,  
x, q5, t ) ,  respectively (see the Appendix). In the case of axisymmetric disturbances, 
Y G 0 and d is related to the usual Stokes stream, function A by 

A ad 
ax 

A = r(l-x*)--. 

The boundary conditions for 6 and Y are obtained from the no-slip boundary 
condition on 8: 8 = a&/& = Y = 0. @ = 0 on the boundaries since q+ f' must 
s$fy the same boundary conditions as T,. For an initial condition we can specify 
@(r,x,  q5,0), Y(r,  x,q5,0), and f ' ( r ,  x, q5 ,O)  arbitrarily. 

The disturbance equations can be written in the form 

(18) 

where L(r,  U) and N(r, U, ri) are linear and bilinear operators, respectively. U,  ri, and 
M are given by 

ari RM t= L(R, U)G+N(R, U,h)  

V2, V,Z, L(R, U) and N are given in the Appendix, Initial bifurcation points of (18) are 
obtained by considering the linearized problem with an exponential time-dependence 

4 = Y = Y exp(at) = uexp(at);  [:I [:I 
the corresponding eigenvalue problem is 

SMU = L(R, U ) U ,  8 = cR. 

3. Numerical solution of the stability problem 
To solve (20), we assume that the disturbance flow functions @, Y, and T may be 

expanded in a complete set of functions known as spherical harmonics. An 
approximate solution for them can be found as truncated series of the form 
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The functions gzrn(r), f z m ( r ) ,  and hzm(r) represent the radial variation of the 
disturbance flow functions. The functions Pr(x )  are the associated Legendre 
functions. 

We shall assume that, if the truncation order N p  is large enough to produce 
converged values of R and the critical eigenvalue gc, then it is large enough to 
produce at  least a minimal trunction which preserves the bifurcation. Such a minimal 
truncation is the smallest such truncation that produces the same critical values for 
R and uc, and that will also produce the same sign (but not necessarily the same 
magnitude) for the first non-zero correction to R (Kloeden 1986). Thus the critical 
values and mode of the bifurcation are correctly produced by a minimal truncation. 

Substituting (21)-(23) into (20) and using recursion relations for the associated 
Legendre functions and the orthogonality properties of the spherical harmonics 
produces a coupled, linear system of ordinary differential equations for the functions 
gzrn(r) ,  f z m ( r ) ,  and hlm(r),  which can be written in matrix form as 

AX = SBX, (24) 
where the elements of the matrices A and B are differential operators and x is the 
eigenvector of functions g z m ( T ) ,  f zm(r) ,  and hzm(r). Since the base flow is axisymmetric, 
there is no coupling between modes with different wavenumbers. B is entirely real. 

The system of equations (24) possesses an important symmetry property with 
respect to the wavenumber m. Note that for m less than zero we can write, for 
example, 

=ff,-lrnl(r) PP'(x) ~ X P  (-iImI$)i 
which, except for the minus sign in the exponential term, has exactly the same form 
as for m greater than zero. The only effect will be a change in sign in the terms arising 
from partial derivatives with respect to 4, which are imaginary. Thus the problem 
is represented in matrix form for m greater than zero by (24) ; the matrix problem for 
m less than zero can be represented by 

AX = FBX, 

where the overbar indicates complex conjugation. That is, the eigenvalue for -m is 
the complex conjugate of the eigenvalue for m, and the eigenvector for -m is the 
complex conjugate of the eigenvector for m. Thus we need consider only non- 
negative values of m, and 

fl,-lmlCr) = .6,\ml(r), d,- lm~(r)  = gL,lrnl(r), hi,-lml(r) = h , l m l ( r ) .  
After some algebra we can then write 

NP 1 2 

1-1 m-ocrn 
@(r, x,d) = 2 C. -[Re{g,m(r))cos(md)-Im{g,,(r))sin(md)IP~(~), (25) 

where 
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The solution algorithm for the stability problem is relatively straightforward. The 
objective is to obtain, for 7 and Pr fixed, the numbers 

R, = R(m,; 7, Pr) = min{R(m; 7, Pr)}  
m 

and s, = s(R, ; 7, Pr),  such that Re {ac) = 0. 

Since the matrices A and B in (24) depend on 7, Pr,  and R, they must be updated 
whenever any of these parameters is changed. 

The eigenvalue problem (24) is a boundary-value problem and can be solved 
numerically by various methods ; the method used here is the modified Chebyshev- 
tau method (a full spectral method) of Gardner et al. (1989). This method is preferred 
over the usual Chebyshev-tau method (e.g. Gottlieb & Orszag 1977), in which 
spurious eigenvalues often arise (Orszag 1971). The modified tau method eliminates 
the computation of spurious eigenvalues. 

The modified tau method is implemented by approximating the functionsf,,, gim, 
and h,, as truncated series of Chebyshev polynomials of the form 

r is related to z via (12). Tfl(z) is the Chebyshev polynomial of order n. Using recursion 
relations for Chebyshev polynomials and their derivatives, and the orthogonal 
properties of the Chebyshev polynomials, a system of coupled, linear algebraic 
equations is produced from the system of differential equations. The resulting matrix 
eigenvalue problem is formally identical to (24), although the sizes and elements of 
A and B are different and the elements of the eigenvector x consist of the expansion 
coefficients f i m f l ,  etc., for f z m ( r ) ,  gtm(r ) ,  and him(r).  The symmetry property with 
respect to m is preserved under the approximation. A sequence of matrix operations 
then modifies the matrices A and B in such a way that spurious eigenvalues are not 
produced. 

All the eigenvalues presented were computed using 64-bit arithmetic. A few test 
calculations were performed using 128-bit arithmetic, and the resulting eigenvalues 
agreed with those computed with 64-bit arithmetic to at least ten digits. All the 
critical eigenvalues reported have real parts whose absolute value is less than 
1 x 10-3. 

4. The stability and bifurcation results 
4.1. Convergence of the critical eigenvalue and Grashof n u d e r  

The approximate eigenvalue problem has two truncation orders, Np and N, (see 
(25)-(28)). The truncation order N, is related to the spatial resolution of the solution 
in the radial (i.e. z )  direction, while the truncation order N p  is related to the spatial 
resolution of the solution on a sphere. The values ofN, and Np required to adequately 
resolve the spatial structure of the solution depend on the scale of the significant 
structures in the solution. The smaller the scale of the significant structures, the 
larger N,, or N,, or both must be for the basis functions to resolve them. 

The convergence of the eigenvalues as a function of N, is indicated by the tau 
coefficients (Gardner et al. 1989). For a fixed value of N p  there will be in general eight 
N p  tau coefficients: four for each of the N p  g-functions, two for each of the N p  f- 
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Eigenvalue 171 

-27.6636283425 86.627801 020i 2.314 
-32.515 105196k69.9772374473 0.9263 
-49.423985493+0.0000000000i 0.4662 
- 61.264575546 +O.OOOOOOOOOOi 2.707 
- 108.57962079 +O.OOOOOOOOOOi 3.730 
- 112.40441615+12.6955689893 9.719 

TABLE 1 .  The first nine eigenvalues with largest real part for Pr = 0.7, 7 = 0.900, R = 200, 
m = 0, N,  = 6, and N, = 21 

Truncation 
order, N, Eigenvalue 171 

6 - 11.423670584-38.853023037i 61.29 
9 -5.3100408693 - 14.061 955770i 16.60 

12 -5.270546347 8 - 14.731 3732491 5.901 
15 - 5.228333 764 3 - 14.723939 951i 1.248 
18 -5.2286392087 - 14.723375524i 0.1329 
21 -5.2285525289- 14.723261 140i 0.04459 

TABLE 2. The effect of the Chebyshev truncation order N, on the convergence of the eigenvalue 
with largest real part for Pr = 0.7, 7 = 0.900, m = 2, and N,  = 6 

functions, and two for each of the N p  h-functions. We are not interested in the value 
of each tau coefficient, but only in some measure of whether the given eigenvalue is 
a good approximation to the true eigenvalue. Since, if the method is converging, all 
the tau coefficients for a given eigenvalue will ultimately decrease in magnitude as 
N, increases, we examine here the behaviour of the sum of the absolute values of all 
the tau coefficients as a function of N,. 

The tau coefficients indicate only the relative degree of convergence of a given 
eigenvalue to the true eigenvalue, since they can be made arbitrarily large or small 
by scaling the eigenvectors from which they are computed. However, if the 
eigenvectors are scaled consistently, then the better approximations to the true 
eigenvalues will have smaller tau coefficients and the poorer approximations will 
have larger tau coefficients. This fact is illustrated by the eigenvalues and tau 
coefficients listed in table 1. Only the first nine eigenvalues and the corresponding tau 
coefficients are listed of the total of 228 eigenvalues for this case, for which the base 
flow is stable. Although the eigenvalue with largest real part does not have the 
smallest tau coefficient, i t  does not have a relatively small one and hence represents 
a good approximation to the true eigenvalue. In  general, the eigenvalues with real 
parts that are larger in absolute value also have larger tau coefficients, indicating 
that these eigenvalues are poorer approximations to the corresponding true 
eigenvalues than those eigenvalues with real parts of smaller absolute value. 

The eigenvalue with largest real part is given as a function of N, in table 2, to 
illustrate the convergence as N ,  increases. Convergence for other cases was similar. 
Although the value of N ,  used in these calculations is small, its exact value is 
immaterial for demonstrating convergence as a function of N,. 

The effect of the number of spectral terms, N p ,  on the convergence of the critical 
stability parameter, R,, and the critical eigenvalue, s,, is shown in figures 3 and 4. For 
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IIm(s,)l 

20 

0 

0 - 
0 

- 0 
0 

0 
0 

0 (Im(s,)l = 8.76 0 
Q m 0 - U - 0  cra -o+o 6-a lo-- - 

. " ' l . " ' ~ " . . ~ . " ~ ~ " " J  

a radius ratio of 0.900, both R, and (Im {s,}l have converged numerically for N p  = 40 
(figure 3), to at least four and three digits, respectively (table 3). For a radius ratio 
of 0.950, neither R, nor IIm (s,}l has converged numerically for N p  = 40 (figure 4), and 
the epsilon algorithm (MacDonald 1964) was used to predict the converged values. 
(The epsilon algorithm provides a mechanism for estimating the converged value for 
a sequence of equally-spaced partial sums of a series. It works most effectively on 
monotonically increasing or decreasing sequences.) 

These results indicate that the scale of the significant structures in the flow is 
smaller on a sphere than in the radial direction. The scale decreases as the radius 
ratio increases, since the value of N p  needed to obtain convergence increases as the 
relative gap width decreases. An estimate of the angular scale of the significant 
structures is n/No ,  where No is one plus the number of zeros in the associated 

FIQURE 3. Numerical convergence of (a) the critical value of R and ( b )  the absolute value of the 
imaginary part of the critical eigenvalue, for Pr = 0.1, 7 = 0.900, m = 0, and N ,  = 12. 
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FIQURE 4. Numerical convergence of (a) the critical value of R and ( b )  the absolute value of the 
imaginary part of the critical eigenvalue, for Pr = 0.1, q = 0.950, m = 0, and N, = 12. 

(a) 

I - 

0 
- 

0 - 
0 

0 - R, = 85.79 O U O  0 0 - - - - - - - - - - -  
- 

' . . ' I . . ' . I ' = . ' I . ' . . I ' ' . . I . . ' . '  

Truncation 
order, N,  

25 
30 
35 
36 
37 
38 
39 
40 

R 
99.3699 
94.7810 
94.0901 
94.1470 
94.1858 
94.2001 
94.2020 
94.2013 

IIm {%}I 
9.34889 
8.13516 
8.67854 
8.74539 
8.76718 
8.70633 
8.761 74 
8.75970 

TABLE 3. The effect of the spectral truncation order N, on the convergence of the eigenvalue 
with largest real part for Pr = 0.1, q = 0.900, m = 0, and N, = 12 
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Pr = 0.1, m = 0 
R,  = 94.2013 

Pr = 0.7, m = 2 
R ,  = 51.2960 

0.000 + 8.759 70i O.OOO+O.OOOOOi 
-3.50403+7.50017i - 1.70676+0.00000i 
-6.77380+6.31295i -3.66579+0.00000i 
-9.43722f5.50280i -5.74716+O.OOOOOi 
- 10.94775+3.754901 -7.82333+0.00000i 

-9.86561 +O.OOOOOi 
-11.10902+0.0OO00i 
- 11.57726 +0.82199i 
- 11.74836 + 0.OOOOOi 

TABLE 4. The isolation of the critical eigenvalue for 7 = 0.900, N, = 40, and N, = 12. (The first 
ten eigenvalues for two cases.) 

7/ = 0.900" 

Pr R ,  IIm{%>l mc Ra, Nu, 
0.000 108.704 26.868 0 - 1.1111 0.67 
0.025 103.974 9.0164 0 270.3 1.1114 0.80 
0.100 94.2013 8.7597 0 887.4 1.1140 0.80 
0.250 86.3916 11.359 0 1886 1.1240 0.64 
0.300 85.6993 11.896 0 2203 1.1288 0.59 
0.305 85.6829 11.977 0 2239 1.1294 0.59 
0.310 84.7601 0 Ob 2227 1.1292 0.38 
0.325 81.0881 0 Ob 2137 1.1278 0.44 
0.350 76.3451 0 Ob 2040 1.1263 0.46 
0.400 69.7370 0 Ob 1945 1.1249 0.51 
0.700 51.2960 0 2 1842 1.1235 0.60 

7 = 0.95W 

Pr R,  lImW1 m, Rac Nu, d S W d  
0.000 98.1336 2.76232 0 - 1.0526 0.78 
0.025 97.6485 1.51562 0 238.4 1.0527 0.80 
0.100 85.7918 0.73855 0 736.0 1.0531 0.78 
0.340 91.1904 0 0 2827 1.0599 0.34 
0.400 79.7877 0 Ob 2546 1.0585 0.31 
0.700 53.0555 0 Ob 1970 1.0562 0.35 

Critical values computed using values from N,, = 40 and N, = 12. 
* The critical wavenumber is two ; the values reported are for m = 0. 

Critical values computed by the epsilon algorithm with N, = 12. 
Computed using values from N, = 40. 

TABLE 5. The critical value of R, the critical eigenvalue, the critical wavenumber, the critical 
Rayleigh number, the critical Nusselt number, and the strict crossing derivative for radius ratios 
of 0.900 and 0.950 

Legendre function PE;(z), in which m, is the critical wavenumber. This scale 
estimates the smallest structure that can be resolved by a truncated series involving 
associated Legendre functions of lower index N p  and upper index m,. The smallest 
angular scale which can be resolved here is 4.39". 
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Re {sl Re (4 

Pr > Pr, 
Y 

FIUURE 5. The change in critical eigenvalue at the transitional Prandtl number Pr,. 

Pr = 0 Pr = 0.7 

m R, m R, 
0 108.704 0 51.4834 
1 108.758 1 51.3371 
2 108.947 2 51.2960 
3 109.248 3 51.3539 
4 109.811 

TABLE 6. The determination of the critical wavenumber for q = 0.900, N,, = 40, and N, = 12 

4.2. Linear stability of the base flow 
The isolation of the critical eigenvalues is illustrated by the data in table 4. The 
critical eigenvalue is isolated from the remaining ones, although the interval in R 
over which the eigenvalues are isolated may be quite small. A sufficient condition to 
ensure that a critical or bifurcation point has been identified is that the crossing of 
the critical eigenvalue be strict (i.e. d[/dR =I= 0, where E = Re { s ~ } ) .  The strict crossing 
of the critical eigenvalue is shown by the values of dS/dR at criticality given in table 
5 ;  also listed are the critical values of R, s, m, Ra,, the critical Rayleigh number, and 
Nu,, the average Nusselt number at criticality on the inner sphere. The values of 
d[/dR at  criticality were computed using a finite-difference approximation and data 
from N p  = 40 and N, = 12. 

The non-zero value of IIm {s,}l for 7 = 0.900 and for Prandtl numbers in the range 
0 < Pr < 0.31 (table 5) indicates a time-periodic bifurcation, since to leading order 
the disturbances are given by (19). For Pr > 0.31, IIm{s,}l is zero and hence the 
disturbance is steady at  criticality. A transitional Prandtl number Pr, thus exists at 
which the mode of bifurcation changes from time-periodic to steady as the Prandtl 
number is increased. This change in bifurcation mode as Pr increases is the result of 
a change in the identity of the eigenvalue that becomes the critical one, rather than 
a monotonic decrease of (Im {s,}] to zero for a given eigenvalue. That is, suppose that 
for Prandtl numbers less than Pr, the eigenvalue s1 has the largest real part, and the 
eigenvalue s2 has the next largest real part. As the Prandtl number is increased 
through Pr,, we find that eigenvalue s2 has largest real part and eigenvalue s1 has 
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next largest real part (figure 5 ) .  For a radius ratio of 0.900, Pr, = 0.31. A similar 
behaviour is observed for a radius ratio of 0.950, for which Pr, = 0.34. 

For Prandtl numbers in the range 0 < Pr < Pr, the critical wavenumber m, is zero 
(table 6), so in this Prandtl-number range the bifurcation is axisymmetric. For 
Prandtl numbers greater than the transitional Prandtl number, the critical 
wavenumber is two (table 6), so that the bifurcation is non-axisymmetric in this 
range. Thus for Prandtl numbers less than the transitional value Pr, the bifurcation 
is time-periodic and axisymmetric, while for Prandtl numbers greater than Pr, the 
bifurcation is steady and non-axisymmetric. 

For comparison with experimental and other numerical results, the critical 
Rayleigh number Ra,  = Rt Pr is included in table 5. Although no experimental data 
exist for radius ratios as large as 0.900, the values computed here for Pr = 0.7 
compare well with the data presented in the flow map for air (figure 9). One expects 
in the limit ?,I+ 1 to recover the classical Rayleigh-BQnard result. Ra, = 1708 for 
horizontal, isothermal, rigid-rigid planes; however, this is strictly true only for m = 
0. Since for Pr = 0.7 > Pr, we have m, = 2, this limit may not be achieved. Further 
analysis is required to resolve this. If it is assumed that the disturbances are 
axisymmetric, as in Douglass et ul. (1990), the data suggest that the classical limit is 
approached as ?,I + 1. 

The average Nusselt number for the outer sphere Nu, is 

since there is no internal energy generation. The critical Nusselt number Nu, is 
defined to be the value of Nu, evaluated for the given values of Pr and ?,I and the 
critical value of R. Using the base flow solution (9), 

For a given radius ratio, Nu, increases with increasing Prandtl number for the range 
0 < Pr < Prt, while for Prandtl numbers greater than Pr,, Nu, decreases (table 5). 
These changes are relatively small. Changes in the values of Nu, with changes in 
radius ratio (for fixed Prandtl number) are also small, on the order of 6% or less. 
These results reflect the relative insensitivity of R, to the radius ratio for the results 
presented here. 

4.3. The bifurcation of the base $ow 
For Prandtl numbers less than the transitional Prandtl number Pr, thc bifurcation 
is time-jeriodic and axisymmetric. Axisymmetry allows us to take !?' E 0 a_nd to 
relate @ to a stream function (17);  we can define a critical stream function A,  by 

1 a6 
ax A,  = r ( i - x z ) L .  

In (29) the 6$ is the component of 6 for the critical wavenumber m,. The critical 
component T, of the distur\anc_e temperature is defined similarly. As a first 
approximation, we can take (@,, Y,, c)T to be the eigenvector corresponding to the 
critical eigenvalue s,, multiplied by the exponential time factor (19). Streamlines 
determined from the contours of (29) are illustrated in figures 6 and 7. For ?,I = 0.900 
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FIGURE 6. Disturbance streamlines do, e = 0.1, at criticality for Pr = 0.1 and q = 0.900. R, = 
94.2013, m, = 0, N,, = 40, and N, = 12. (a) Base flow streamlines, from (b-e)  disturbance flow 
streamlines at times w = oo t = 0, &c, n and in respectively. (All plots have the mme axes. A positive 
stream functio-n value indicates a clockwise flow direction. The scale is for the disturbance 
streamlines, €Ac, only.) 

and Pr = 0.1, the instability sets in as a cluster of toroidal rolls centred at 
approximately 2 = 0.5 (30' from the top of the annulus). Disturbance streamlines are 
shown in figure 7 for 7 = 0.900 and Pr = 0; the cluster of rolls is centred at x % -0.1 
(96' from the top of the annulus). 

This behaviour parallels that of the critical disturbances in the analogous stability 
problem in concentric horizontal cylinders (Walton 1980). For the concentric 
cylinders, the critical disturbance appears at 5 = 0 when PT = 0. The polar coordinate 
at which the disturbance sets in increases with Prandtl number until, at  a 
transitional Prandtl number of 0.24 (for 'narrow gaps'), the disturbance sets in at 
x = 1, and does so for all greater Prandtl numbers. This is quite similar to the 
behaviour observed here, where (7,PrJ = (0.900, 0.31) and (0.950,0.34). 

For Prandtl numbers greater than Pr, the bifurcation is steady and non- 
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FIGURE 7. Disturbance streamlines €Ac, e = 0.1, at criticality for Pr = 0 and 71 = O.BOO.R, = 108.704, 
m, = 0, N, = 40, and N, = 12. (a) Base flow streamlines, (be) disturbance flow streamlines at times 
w = o,t = 0, in, n: and respectively. (All plots have the same axes. A positive stream function 
value indicates a clockwise flow direction. The scale is for the disturbance streamlines, €A,, only.) 

axisymmetric. The non-axisymmetric nature of the bifurcation precludes the use of 
contours of a stream function to display the streamlines. We can obtain some insight 
into the nature of the disturbance flow, however, by examining components of the 
disturbance velocity. The critical disturbance velocity components drc, d,,, and d+c 
can be determined from the expressions for the disturbance velocities and the critical 
components of the disturbance poloidal and toroidal potentials @, and YC: 

i$, = - x -Z(Z+ 1) [Re(g,,)cos(mq5+w0t)-1m(g,,)sin(mq5+~,t)]~~(z), (30) 
1 N p  2 

r +M Cm 

~ 9 2  i a  
vAzc = - x c { - - [Re {rglm} cos (mq5 + wo t )  - I m  {rgzm} sin (mq5 + wo t ) ]  PT"(x) 

i-M m r a r  
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2 

8 
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.3 <I-> <I=> <-> CI - 
I I I I 

- [Re {fim) cos (mq5 + oo t )  - Im vim> sin (m$ +wo t ) ]  Py+l(z) , I 
where M = max {m, 0, wo = Im {a,} = 0, and m = m,. 

To explore the nature of the disturbance flow field, the disturbance radial velocity 
(30) was computed for Prandtl number 0.7 and radius ratio 0.900 at criticality. 
Contours of IG,, on the sphere x = 0 are presented in figure 8. In this figure, the upper 
and lower edges correspond to the north and south poles, 2 = 1 and z = - 1,  
respectively, of the sphere z = 0. The disturbance flow includes a cluster of four cells 
arranged symmetrically around each pole of the annulus. In each cluster, if the flow 
in one cell is radially outward, the flow in the two adjoining cells is radially inward, 
so that the flow alternates in the radial direction from one cell to either adjacent one. 

5. Summary of the problem and the results 
The linear stability 'of natural convection flow of a Boussinesq fluid in a narrow- 

gap concentric spherical annulus has been explored, for the case where the inner 
sphere has a higher temperature than the outer sphere. The essential parameters for 
the problem are the radius ratio, the Prandtl number, and the Grashof number ; the 
square root of the Grashof number, R, is the stability parameter. Critical Grashof 
numbers, critical eigenvalues, and critical wavenumbers were determined for Prandtl 
numbers ranging from zero to 0.7, and for radius ratios of 0.900 and 0.950. The 
convergence of the critical eigenvalues as functions of the truncation orders N, and N p  
was thoroughly explored. N, was fixed at  twelve. A value of N p  = 40 was necessary 
to ensure convergence for a radius ratio of 0.900. For a radius ratio of 0.950, 
numerical convergence required N p  > 40, and the epsilon algorithm was used to 
estimate the converged values. 

For a radius ratio of 0.900, critical values of the stability parameter R ranged from 
108.704 for a Prandtl number Pr of zero to 51.2960 for Pr = 0.7. For a radius ratio 
of 0.950, critical values of r ranged from 98.1336 for PT = 0 to 53.0555 for Pr = 0.7. 
For a given radius ratio, there is a transitional value of the Prandtl number, Pr,, at 
which the mode of the bifurcation changes. For Pr < Pr, the bifurcation is time- 
periodic and axisymmetric, while for Pr > Pr, the bifurcation is steady and non- 
axisymmetric, with wavenumber two. This transition is the result of a change in 

FIQURE 8. Disturbance radial velocity contours e&, 8 = 0.1, on the sphere z = 0 at criticality 
for Pr = 0.7 and 71 = 0.900. R, = 51.2960, m, = 2, N,, = 40, and N, = 12. 
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FIGURE 9. Comparison of the critical Rayleigh numbers for Prandtl number 0.7 (V) (N,  = 40, 
N, = 12) with experimental data for air: CE, crescent eddy; KSE, kidney-shaped eddy; MKSE, 
modified kidney-shaped eddy ; PIC, periodic internal contracting eddy ; 3DSF, three-dimensional 
steady flow; FV, failing vortex (nomenclature and data after Bishop et al. 1964 a, b and Yin et al. 
1973); ., from Douglass et al. (1990) for N ,  = 75 and N ,  = 8. The solid horizontal line is the 
Rayleigh-BBnard limit Ra, = 1708 for horizontal, isothermal, rigid-rigid planes. 

which eigenvalue is the critical one. Pr, is 0.31 for a radius ratio of 0.900 and 0.34 for 
a radius ratio of 0.950. The existence of a transitional Prandtl number resembles the 
existence of a similar Prandtl number for the analogous problem in horizontal, 
concentric cylinders (Walton 1980). 

A first approximation to the bifurcated flow was obtained using the eigenvector 
corresponding to the critical eigenvalue. For Prandtl numbers less than Pr,, 
streamlines reveal that the critical disturbance is composed of a cluster of toroidal 
eddies that appear in the upper portion of the annulus. The eddies alternate in 
direction of rotation, and apparently remain fixed in location, but pulsate in strength 
with time. The location of the cluster moves toward the top of the annulus as the 
Prandtl number increases. 

For Prandtl numbers greater than Pr,, the disturbance radial velocity component 
was plotted for an imaginary spherical shell midway between the boundary spheres 
and concentric with them. This plot reveals that the disturbance flow possesses four 
regions clustered around each pole of the annulus where the velocity is alternately 
radially outward and radially inward, from one region to the adjacent ones. 

Critical Rayleigh numbers Ra, for Prandtl number 0.7 and radius ratios 0.900 and 
0.950 compare favourably with extrapolated experimental results for air (figure 9). 
The computed bifurcation for Prandtl number 0.7 and narrow gaps is steady and 
non-axisymmetric, while the experimental data suggest that this bifurcation might 
be unsteady and axisymmetric (as is observed for Prandtl numbers less than Pr,). 
The existence of the transitional Prandtl number may account for this, if Pr = 0.7 is 
less than the transitional Prandtl number for radius ratios where experimental data 
is available. 

The critical Rayleigh number Ra, = 1842 for Pr = 0.7 and 7 = 0.900 compares 
5 FLm 221 
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favourably with the value of Ra, = 2350 computed by Mojtabi & Caltagirone (1982) 
for concentric spheres with 7 = 0.83 and an infinite Prandtl number, assuming the 
disturbance sets in a t  the top of the annulus. It also compares favourably with the 
value Ra, = 1733 computed by Walton (1980) for axisymmetric disturbances to 
natural convection flow in horizontal, concentric cylinders. Walton reports a 
transitional Prandtl number of - 0.24 (but reports no variation with 7) and an 
expansion 

Ra, = Ra,+(l -q)Ra, 

for which the limit q-+ 1 is Ra, = 1708, the same result as for the classical 
Rayleigh-Benard problem with rigid-rigid, horizontal isothermal boundaries. The 
classical limit may not be attained in the problem investigated here because the 
critical wavenumber is two, and not zero. 

We have thus found that there is a flow bifurcation for Prandtl number 0.7 that 
seems consistent with the extrapolated experimental results for air. The bifurcation 
has also been explored in a neighbourhood of the critical Grashof number for various 
Prandtl numbers from zero to 0.7 and for radius ratios of 0.900 and 0.950. A 
transitional Prandtl number, at which the bifurcation mode changes from unsteady 
and axisymmetric to steady and non-axisymmetric is shown to exist ; the value of the 
transition Prandtl number is 0.31 for radius ratio 0.900 and 0.34 for radius ratio 
0.950. 

This material is based on work supported by the National Science Foundation 
under Grant No. CBT-8612427. I n  addition, this work was partially supported by the 
National Center for Supercomputing Applications a t  the University of Illinois a t  
Urbana-Champaign, and utilized the CRAY 2 system there. Partial support was also 
provided by the Department of Mechanical Engineering and the College of 
Engineering and Technology of the University of Nebraska-Lincoln. This support is 
gratefully acknowledged. 

Appendix 
The disturbance velocity 6 is solenoidal ; hence it can be expressed as a sum of two 

other velocities which arise from the poloidal and toroidal potentials 6 ( ~ ,  x ,  q5, t )  and 
"(r, x,$, t ) ,  respectively (Chandrasekear 1961 ; Sherman_l968; Warner 1972; Joseph 
1976) : 8 = 6, + u2, where 6, = curl2 (r@) and 6, = curl (rUI). The potentials are unique 
to within an additive function of r .  To express (15) and (16) in terms of 6 and Y ,  we 
substitute them directly into (15), and apply the operators r-curl and r-cur12 to (16) 
to obtain the nonlinear equations for the evolution of the disturbance flow : 
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These equations can be written in the form 
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where L and N are respectively linear and bilinear operators. Definitions of U and u 
are given in the text. The components of L and N are 
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Introducing the coordinate transformation (12) the problem domain and boundaries 
are now 

{ ( z , z ,$ ) :  - l < z < l ,  - l < x < l ,  0 < $ < 2 x }  

((2, z, q5): 2 = -1, -1 < z < 1, 0 < $ < 27r) 
{(z,z,+): z = + 1 ,  - l < z < l ,  O<$d2n). 

The equations are 

+R4 2 bOZkm2- d 2 f k m  dfkm 
dz2 + 'lZkm2 + '2Zkm2 f k m  

k=M 

d dgkm 
+%3Zkm2 &% gkm + '42kmZ 9i gkm + Y52km2 dx + %6Ikrn2 gkm 

for 1 = M, M +  1, ... , Np with m fixed; 

dfkm (2Z+ l)(Z-m) ! N m  2 %6Zkm hkm -tR2 k-m ~ lZkm1-+%2Zkml  dz f k m  

dfkm 1 k l [  
+ F 3 2 k m l ~ + % 4 Z k m 1 - + % 5 1 k m 1  dgkm gkm + R4 x F l Z k m 2 x +  FZZkm2 f k n  

d2gkm dgkm 

dz 

+F32km2- dz 

for l = M , M + l ,  ..., N,withmfixed; 

(A 5 )  &2 + F41km2 -+ %5lkm2 gkm 

(9; - SPT) hlm + 
2(l+ m) ! k-M 

1 dhkm 
N m  

+R2 x [ x42kml T+ #.5Zkml hkm 
k=m 

1 dgkm NP 

+R3 k-M x [ ~ l Z k m l f k m + x 2 2 k m l ~ + ~ 3 1 k m l ~ k m  

+ R4 c [ x42km2 dx + *5Zkm2 hkm 1 dhkm 
N m  

k-m 

dgkm N m  

+ R5 c [ xlZkmZ f k m  + H2Zkm2 x+ x3Zkm2 gkm]} = (* 6) 
k-M 

for l = m, m + l ,  ..., Nm with m fixed; where M = max(1,m) and Nm = N,+m-M. 
The operator g;( .) is defined by 

4 d(* )  l ( l + l )  
g;( . )  = 4d2(.)+---- dz2 r(z) dx r(x)* ( . ) *  
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The functions $jjlkmn, FilPrnn, and &jlkrnn are given in Gardner (1988). The boundary 
conditions become 

l = O ,  1 ,..., N p ,  m = - 1 ,  -1+1,.. . ,  - 1 , 0 , 1 , 2  ,... 1. 

The equations (A 4)-(A 6) with the boundary conditions (A 7) comprise a system 
of coupled, linear ordinary differential equations, whose solution yields the 
eigenvalue s and the corresponding eigenvector of functions g l m ,  f l m ,  and hem. 

The functions fl,, g,,, and h,, are approximated by truncated series of Chebyshev 
polynomials of the form (28). Using recursion relations for the Chebyshev 
polynomials and their derivatives, and the orthogonality property of the Chebyshev 
polynomials, a system of coupled, linear algebraic equations is obtained for the 
expansion coefficients f i m n ,  g,,,, and h,,,. The coefficients in the equations involve 
integrals of the form 

QEEj = (1  - s 2 ) i P  P",(z) Pi(,) P r ( s )  ds,  

where PO,(z) is the usual Legendre polynomial of order n. These integrals were 
evaluated by means of a 64-point Gaussian quadrature. 
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